Dangerous Herbs: Poisons

Cassandra L. Quave, Ph.D.
Center for the Study of Human Health
Virtue itself turns to vice, being misapplied,
And vice sometimes by action dignified.
Within the infant rind of this small flower,
Poison hath residence, and medicine power.

-William Shakespeare, Romeo and Juliet
Learning Objectives

• What is mankind’s history with poisonous plants?
• What are the main classes of poisonous plant compounds?
• What are the symptoms associated with the toxidromes discussed in lecture?
• What are some examples of poisonous gymnosperms and angiosperms?
Poisons in Human History

• Early humans likely experienced much poisoning in the search for new foods
• One function of early agriculture was to select for more palatable (less bitter, less poisonous) plant variants
• Food processing to remove poison also important

• Cassava *Manihot esculenta* (Euphorbiaceae)
 – Starchy tuber is the main source of carbohydrates in the tropics
 – Tuber is filled with poisonous cyanogenic glycosides and hydrogen cyanide (HCN)
 • A dose 40 mg of pure cassava cyanogenic glucoside is sufficient to kill a cow.
 – Tuber is processed to remove the poison (soaking, boiling, fermentation)
Manihot esculenta Crantz, Euphorbiaceae

Fermented cassava beverage (mashed with sugar cane juice & saliva)
Poisons and the criminal arts

• Agrippina (19-59 AD)
 – Empress and wife of Emperor Claudius and mother of Nero
 – used poisonous mushrooms to kill Lollia Paulina, Marcus Sianus, and her husband Claudius, among others

• Cleopatra (51-30 BC)
 – Tested poisons on her slaves
 • *Hyoscyamus niger* (henbane)
 • *Atropa belladonna* (belladonna)
 • *Strychnos nux-vomica* (source of strychnine)
Poisons and Drugs

• Most drugs are poisons:
 – Dose dependent curves (blood level vs. time)
 – Blood level is usually proportional to dose
 – Therapeutic dose vs. toxic dose
 – Variation in humans

• Pharmacological actions
 – Sub-therapeutic effects
 – Therapeutics effects
 – Super-therapeutic effects
 • Toxidromes (syndrome caused by a dangerous level of toxins in the body)
 Common symptoms include dizziness, disorientation, nausea and vomiting.
Poisons and Drugs

• Injurious plants
 – Internal poisons
 – Allergens
 – Cell-modifiers
 • Mutagens, teratogens and lectins (including mitogens)

• Human adaptations:
 – Liver enzymes
 – New niches:
 • Food plants
 • Psychoactive plants
 • Medicines
Allergens

Primary plant allergens
• Proteins found in any part of the plant.
 – Ex. Anacardiaceae (leaves, pollen, etc)
 – Ex. Poaceae (pollen)

Examples of plant allergen effects
• Dermatitis
• Allergic rhinitis
• Anaphylactic shock
Toxidromes

• Definitions:
 – clinical syndromes that are essential for the successful recognition of certain poisoning patterns
 – A constellation of signs and symptoms that suggest a specific class of poisoning
Toxidromes

• In a clinical setting, the most important toxidromes include:
 – Sympathomimetic
 – Sedative hypnotic
 – Opiate
 – Anti-cholinergic
 – Cholinergic
Stimulant Toxidrome

Symptoms
- Restless
- Excessive motor activity
- Insomnia
- Hallucinations
- Excessive speech
- Tremor
- Tachycardia
Sedative Hypnotic

Symptoms

• Sedation
• Confusion
• Delirium
• Hallucinations
• Coma
• Paresthesias
• Dysesthesias
• Diplopia
• Blurred vision
• Slurred speech
• Ataxia
• Nystagmus
Opiate

Symptoms

• Altered mental status
• Miosis
• Unresponsiveness
• Shallow respirations
• Slow respiratory rate
• Bradycardia
• Decreased bowel sounds
• Hypothermia

“The doctor gave me these zonko pain pills, but I promised him I’d only take them in case of extreme discomfort.”
Anticholinergic

Symptoms

• Fever
• Ileus
• Flushing
• Tachycardia
• Urinary retention
• Dry skin
• Blurred vision
• Mydriasis
• Decreased bowel sounds
• Myoclonus
• Choreaathetosis
• Psychosis
• Hallucinations
• Seizures
• Coma

Hot as a hare, dry as a bone, red as a beet, mad as a hatter
Cholinergic

Symptoms
- Salivation
- Lacrimation
- Urination
- Defecation
- GI distress (diarrhea)
- Emesis
- Bronchorrhea, Bradycardia
What are toxins that cause:

<table>
<thead>
<tr>
<th>Coma</th>
<th>Hypotension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohols</td>
<td>Arsenic Lithium</td>
</tr>
<tr>
<td>Beta Blockers</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>Lead</td>
<td>Phenothiazines</td>
</tr>
<tr>
<td>PCP</td>
<td>Sedative Hypnotics</td>
</tr>
<tr>
<td>Opiates</td>
<td>Sedative Hypnotics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pupil Changes</th>
<th>Temperature Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miosis</td>
<td>Hyperthermia</td>
</tr>
<tr>
<td>Cholinergics</td>
<td>Anticholinergics</td>
</tr>
<tr>
<td>Clonidine</td>
<td>Glutethimide</td>
</tr>
<tr>
<td>Nicotine</td>
<td>Meperidine</td>
</tr>
<tr>
<td>Phenothiazines</td>
<td>Sympathomimetics</td>
</tr>
<tr>
<td>PCP</td>
<td>Withdrawal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory Effort</th>
<th>Increased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased</td>
<td>CO, CN</td>
</tr>
<tr>
<td>Alcohols</td>
<td>Drug induced metabolic acidosis</td>
</tr>
<tr>
<td>Barbiturates</td>
<td>Drug induced hepatic failure</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>Drug induced methemoglobinemia</td>
</tr>
<tr>
<td>Opiates</td>
<td>Salicylates</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heart Rate Changes</th>
<th>Bradycardia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachycardia</td>
<td>Alpha blockers</td>
</tr>
<tr>
<td>Anticholinergics</td>
<td>Beta blockers</td>
</tr>
<tr>
<td>Antihistamines</td>
<td>Calcium channel blockers</td>
</tr>
<tr>
<td>Cyclic Antidepressants</td>
<td>Cardiac glycosides</td>
</tr>
<tr>
<td>PCP</td>
<td>Cholinergics</td>
</tr>
<tr>
<td>Sympathomimetics</td>
<td>Nicotine</td>
</tr>
<tr>
<td>(Cocaine, Amphetamine, Theophylline, etc.)</td>
<td>Parasympathomimetics</td>
</tr>
</tbody>
</table>
Chemistry of Poisonous Plants

- **Alkaloids**
 - nitrogen containing compounds

- **Cardiac glycosides**
 - Act on cardiac muscle
 - >400 characterized

- **Cyanogenic glycosides**
 - Yield hydrogen cyanide (HCN)
 - Amygdalin is common in Rose family

- **Anthraquinone glycosides**
 - Purgative activity

- **Saponin glycosides**
 - Yield sapogenin (steroid or triterpene)
 - Irritate mucous membranes, destroy RBC, toxic especially to cold blooded animals like fish

- **Pyrrolizidine alkaloids**
 - hepatotoxins
Chemistry of Poisonous Plants

• **Resins**
 - Complex, chemical nature, insoluble in water, lack nitrogen
 - Toxic resins can be very poisonous (ex. Water hemlock)

• **Element & Nitrogen Absorption**
 - Plants may accumulate harmful elements such as mercury or selenium

• **Coumarin glycosides**
 - Not very common
 - Some prevent thyroid from accumulating inorganic iodine

• **Lectins**
 - High toxicity proteins found in small number of plants
 - Similar to bacterial toxins

• **Oxalates**
 - Oxalic acid is widespread in plants, can occur as soluble or insoluble (calcium oxalate)
 - Calcium oxalate is a skin and mucous membrane irritant
Cyanide

• Plant families that produce cyanogenic glycosides:
 – Rosaceae
 – Fabaceae
 – Poaceae
 – Euphorbiaceae

• Examples of genera:
 – Passiflora (passion flower)
 – Manihot (cassava)
 – Malus (apple)
 – Prunus (plums, cherries, peaches, apricots and almonds)
 – Pyrus (pears)
 – Cassia
Saponins

• Examples of plant families that produce saponins:
 – Fabaceae

• Examples of genera:
 – Glycyrrhiza (licorice)
 – Panax (ginseng)
 – Medicago (alfalfa)
Coumarins

- Examples of plant families that produce coumarin glycosides:
 - Fabaceae

- Examples of genera:
 - *Viburnum* (black haw)
 - *Trifolium* (sweetclover)
Oxalates

• Examples of plant families that produce oxalates:
 – Oxalidaceae

• Examples of genera:
 – *Oxalis* (sorrel)
Phytotoxins

• Examples of plant families that produce phytotoxins:
 – Euphorbiaceae

• Examples of genera:
 – *Ricinus* (castor, protein: ricin)
Other biological poisons

- **Bacteria**
 - *Staphylococcal* intoxication
 - Botulism (*Clostridium botulinum*)
 - *Escherichia coli* toxins
 - *Bacillus* toxins

- **Algae**
 - Blue-green algae
 - *Gonyaulax* spp.
 - Red tide
 - *Pfiesteria piscida*

- **Fungi (Mycotoxins)**
 - *Aspergillus* spp.
 - *Claviceps purpurea* (ergot)
 - *Amantia phalloides* (detah cap mushroom)

- **Ferns & fern allies**
 - *Pteridium aquilinum* (bracken)
 - *Equisetum* spp.
 (thiaminase could lead to toxicity after ingestion)
Hepatoprotective effects of Milk Thistle

- *Silybum marianum* (Asteraceae)
- Silymarin is a flavolignan mixture which can suppress toxic effects of death cap mushrooms (some of most potent liver toxins)
- Standardized silymarin extracts are used to treat liver damage and hepatic cirrhosis
- Milk thistle is also an important traditional medicine throughout the Mediterranean, where it grows in the wild

Silybinin (an active component of the silymarin mixture)
Gymnosperms

• All cycads and zamias have poisonous fleshy seeds
 – If the azoxy alkaloids are washed out, they can be eaten (or flour made from them)

Cycas circinalis, Cycadaceae (fern palm)
Dioon edule, Zamiaceae (false sago palm)
Zamia integrifolia, Zamiaceae (coontie)
Gymnosperms: Taxus, Taxaceae (yews)

- Taxanes: taxines and taxols (ester alkaloids)
- Taxols
 - Concentrations usually low
 - Most toxicity attributed to taxines
- Taxines are cardiotoxic
- Lethal dose: 4-20 mg/kg
- Rapid absorption from GI tract to circulatory system
- Affects sodium-potassium transport
- Sudden death occurs with trembling, labored breathing, and collapse
- Most deaths in animals that forage on leaves, human deaths rare

Taxus baccata
Gymnosperms: *Gingko biloba*, Ginkoaceae

- Seeds contain a neurotoxin:
 - 4-O-methyl pyridoxine
 - Interferes with amino acid metabolism
 - Results in convulsions and death (27% lethality)
Angiosperms: *Dieffenbachia seguine*, Araceae (Dumbcane)

- Common houseplant
- Active Compound:
 - Irritant juice and/or crystals of calcium oxalate
 - Burning sensation caused by enzyme or asparagine
- Symptoms:
 - Ingestion results in swelling of throat and mouth; possible asphyxiation
Angiosperms: *Ricinus communis*,
Euphorbiaceae (Castor bean; castor oil)

- Castor oil extracted from seeds is used medicinally as laxative – but eating the seeds can kill
- Active Compound:
 - Ricin: a highly poisonous phytotoxin
- Symptoms:
 - Nausea, muscle spasms, purgation, convulsions, and death
Angiosperms: *Abrus precatorius*, Fabaceae (rosary pea; jequirity bean)

- Toxic effect from chewing the seeds
- Active Compound:
 - Abrin (phytotoxin similar to ricin) & abric acid from thoroughly chewed seeds
- Symptoms:
 - Gastrointestinal distress
 - Fatal to humans and animals
Angiosperms: *Colchicum autumnale*, Colchicaceae (autumn crocus or meadow saffron)

- Colchicine derived from this plant used medicinally to treat gouty arthritis
- Active Compound:
 - Colchicine & other alkaloids
 - Highest concentration is in seeds and corm
 - Amount of colchicine in 2-3 seeds can kill
- Symptoms:
 - Burning of throat & stomach, vomiting, purging, weak-quick pulse, kidney failure, respiratory failure, often fatal, flowers have been fatal to children
Angiosperms: *Digitalis* spp., Plantaginaceae (Foxgloves)

- Controlled doses used to treat heart diseases like congestive heart failure
- **Active Compound:**
 - Cardiac glycosides (digoxin & digitoxin) in leaves, seeds, flowers
- **Symptoms:**
 - Poisoning from plant or overdose of medication
 - Vomiting, purging, severe headache, irregular heartbeat and pulse, convolution, sudden death
Angiosperms: *Nerium oleander*, Apocynaceae (oleander)

- Examples of poisoning events: ingestion after confusion with eucalyptus; ingestion by children; suicide attempts
- Active Compound:
 - Cardioactive glycosides; oleandrin is the main glycoside from leaves
- Symptoms:
 - Ingestion results severe vomiting, bloody diarrhea, irregular heartbeat, drowsiness, unconsciousness, respiratory paralysis, fatal
Angiosperms: *Senecio* spp., Asteraceae (groundsels or ragworts)

- Mistaken identity – confused with a *Gnaphalium* sp. & included in herbal remedy for colds
- Active Compound:
 - Hepatotoxic pyrrolizidine alkaloids
- Symptoms:
 - Ingestion results in acute illness and death in livestock and humans
Angiosperms: *Datura stramonium*, Solanaceae (jimsonweed)

- Used as recreational psychoactive drug – users often unaware of toxicity/poisonous nature of plant
- Active Compound:
 - Scopalamine, especially L-hyoscyamine; most found in leaves, unripe capsules, especially seeds
- Symptoms:
 - Even small amounts fatal; symptoms similar to *Atropa belladonna* (flushed skin, dilated pupils, dry mouth, delirium, death from respiratory failure)
Angiosperms: *Cicuta* spp., Apiaceae (water hemlock)

- European poison hemlock made famous by Socrates’ execution (contains toxic pyridine alkaloids)
- Active Compound:
 - Cicutoxin, in root and above-ground parts: is a violent convulsant that acts directly on the CNS
- Symptoms:
 - 2-3 cm section of root can kill an adult
Angiosperms: *Prunus armeniaca*, Rosaceae (apricot)

- Common edible plant (fruit)
- Active Compound:
 - Amygdalin and cyanide in seeds, leaves & bark
- Symptoms:
 - Ingestion results of parts with amygdalin results in cyanide poisoning, may be fatal
Angiosperms: *Strychnos nux-vomica*, Loganiaceae (nux-vomica)

- Tested by Cleopatra as possible suicide toxin
- Active Compound:
 - Indole alkaloids (strychnine and brucine) from dried ripe seeds; all parts contain strychnine
- Symptoms:
 - Agitation, muscle spasms, convulsions
 - Extremely toxic, strychnine is fatal to humans at doses of 60-90 mg
Summary

- The division between medicine and poison is often small – and all medicines have the potential to be toxic if used improperly.
- Humans have developed ways of limiting toxicity of certain plants by processing and selective agriculture.
- Some of the top reasons plant poisonings occur is because of:
 - Mistaken identity
 - individual collects and uses wrong species; or
 - wrong species is used in the preparation of an herbal product (example: tea; dietary supplement, topical cream) for sale
 - Ingestion by young children (particular problem with ornamental plants commonly found in homes and outdoor play areas)
 - Intentional use (suicide, murder, terrorism)